Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evaluation of genome sequencing quality in selected plant species using expressed sequence tags.

Identifieur interne : 002698 ( Main/Exploration ); précédent : 002697; suivant : 002699

Evaluation of genome sequencing quality in selected plant species using expressed sequence tags.

Auteurs : Lingfei Shangguan [République populaire de Chine] ; Jian Han ; Emrul Kayesh ; Xin Sun ; Changqing Zhang ; Tariq Pervaiz ; Xicheng Wen ; Jinggui Fang

Source :

RBID : pubmed:23922843

Descripteurs français

English descriptors

Abstract

BACKGROUND

With the completion of genome sequencing projects for more than 30 plant species, large volumes of genome sequences have been produced and stored in online databases. Advancements in sequencing technologies have reduced the cost and time of whole genome sequencing enabling more and more plants to be subjected to genome sequencing. Despite this, genome sequence qualities of multiple plants have not been evaluated.

METHODOLOGY/PRINCIPAL FINDING

Integrity and accuracy were calculated to evaluate the genome sequence quality of 32 plants. The integrity of a genome sequence is presented by the ratio of chromosome size and genome size (or between scaffold size and genome size), which ranged from 55.31% to nearly 100%. The accuracy of genome sequence was presented by the ratio between matched EST and selected ESTs where 52.93% ∼ 98.28% and 89.02% ∼ 98.85% of the randomly selected clean ESTs could be mapped to chromosome and scaffold sequences, respectively. According to the integrity, accuracy and other analysis of each plant species, thirteen plant species were divided into four levels. Arabidopsis thaliana, Oryza sativa and Zea mays had the highest quality, followed by Brachypodium distachyon, Populus trichocarpa, Vitis vinifera and Glycine max, Sorghum bicolor, Solanum lycopersicum and Fragaria vesca, and Lotus japonicus, Medicago truncatula and Malus × domestica in that order. Assembling the scaffold sequences into chromosome sequences should be the primary task for the remaining nineteen species. Low GC content and repeat DNA influences genome sequence assembly.

CONCLUSION

The quality of plant genome sequences was found to be lower than envisaged and thus the rapid development of genome sequencing projects as well as research on bioinformatics tools and the algorithms of genome sequence assembly should provide increased processing and correction of genome sequences that have already been published.


DOI: 10.1371/journal.pone.0069890
PubMed: 23922843
PubMed Central: PMC3726750


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evaluation of genome sequencing quality in selected plant species using expressed sequence tags.</title>
<author>
<name sortKey="Shangguan, Lingfei" sort="Shangguan, Lingfei" uniqKey="Shangguan L" first="Lingfei" last="Shangguan">Lingfei Shangguan</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Horticulture, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Horticulture, Nanjing Agricultural University, Nanjing City, Jiangsu Province</wicri:regionArea>
<wicri:noRegion>Jiangsu Province</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Han, Jian" sort="Han, Jian" uniqKey="Han J" first="Jian" last="Han">Jian Han</name>
</author>
<author>
<name sortKey="Kayesh, Emrul" sort="Kayesh, Emrul" uniqKey="Kayesh E" first="Emrul" last="Kayesh">Emrul Kayesh</name>
</author>
<author>
<name sortKey="Sun, Xin" sort="Sun, Xin" uniqKey="Sun X" first="Xin" last="Sun">Xin Sun</name>
</author>
<author>
<name sortKey="Zhang, Changqing" sort="Zhang, Changqing" uniqKey="Zhang C" first="Changqing" last="Zhang">Changqing Zhang</name>
</author>
<author>
<name sortKey="Pervaiz, Tariq" sort="Pervaiz, Tariq" uniqKey="Pervaiz T" first="Tariq" last="Pervaiz">Tariq Pervaiz</name>
</author>
<author>
<name sortKey="Wen, Xicheng" sort="Wen, Xicheng" uniqKey="Wen X" first="Xicheng" last="Wen">Xicheng Wen</name>
</author>
<author>
<name sortKey="Fang, Jinggui" sort="Fang, Jinggui" uniqKey="Fang J" first="Jinggui" last="Fang">Jinggui Fang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23922843</idno>
<idno type="pmid">23922843</idno>
<idno type="doi">10.1371/journal.pone.0069890</idno>
<idno type="pmc">PMC3726750</idno>
<idno type="wicri:Area/Main/Corpus">002507</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002507</idno>
<idno type="wicri:Area/Main/Curation">002507</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002507</idno>
<idno type="wicri:Area/Main/Exploration">002507</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evaluation of genome sequencing quality in selected plant species using expressed sequence tags.</title>
<author>
<name sortKey="Shangguan, Lingfei" sort="Shangguan, Lingfei" uniqKey="Shangguan L" first="Lingfei" last="Shangguan">Lingfei Shangguan</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Horticulture, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Horticulture, Nanjing Agricultural University, Nanjing City, Jiangsu Province</wicri:regionArea>
<wicri:noRegion>Jiangsu Province</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Han, Jian" sort="Han, Jian" uniqKey="Han J" first="Jian" last="Han">Jian Han</name>
</author>
<author>
<name sortKey="Kayesh, Emrul" sort="Kayesh, Emrul" uniqKey="Kayesh E" first="Emrul" last="Kayesh">Emrul Kayesh</name>
</author>
<author>
<name sortKey="Sun, Xin" sort="Sun, Xin" uniqKey="Sun X" first="Xin" last="Sun">Xin Sun</name>
</author>
<author>
<name sortKey="Zhang, Changqing" sort="Zhang, Changqing" uniqKey="Zhang C" first="Changqing" last="Zhang">Changqing Zhang</name>
</author>
<author>
<name sortKey="Pervaiz, Tariq" sort="Pervaiz, Tariq" uniqKey="Pervaiz T" first="Tariq" last="Pervaiz">Tariq Pervaiz</name>
</author>
<author>
<name sortKey="Wen, Xicheng" sort="Wen, Xicheng" uniqKey="Wen X" first="Xicheng" last="Wen">Xicheng Wen</name>
</author>
<author>
<name sortKey="Fang, Jinggui" sort="Fang, Jinggui" uniqKey="Fang J" first="Jinggui" last="Fang">Jinggui Fang</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Expressed Sequence Tags (MeSH)</term>
<term>Genome, Plant (genetics)</term>
<term>Oryza (genetics)</term>
<term>Zea mays (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (génétique)</term>
<term>Génome végétal (génétique)</term>
<term>Oryza (génétique)</term>
<term>Zea mays (génétique)</term>
<term>Étiquettes de séquences exprimées (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Genome, Plant</term>
<term>Oryza</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Génome végétal</term>
<term>Oryza</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Expressed Sequence Tags</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Étiquettes de séquences exprimées</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>With the completion of genome sequencing projects for more than 30 plant species, large volumes of genome sequences have been produced and stored in online databases. Advancements in sequencing technologies have reduced the cost and time of whole genome sequencing enabling more and more plants to be subjected to genome sequencing. Despite this, genome sequence qualities of multiple plants have not been evaluated.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODOLOGY/PRINCIPAL FINDING</b>
</p>
<p>Integrity and accuracy were calculated to evaluate the genome sequence quality of 32 plants. The integrity of a genome sequence is presented by the ratio of chromosome size and genome size (or between scaffold size and genome size), which ranged from 55.31% to nearly 100%. The accuracy of genome sequence was presented by the ratio between matched EST and selected ESTs where 52.93% ∼ 98.28% and 89.02% ∼ 98.85% of the randomly selected clean ESTs could be mapped to chromosome and scaffold sequences, respectively. According to the integrity, accuracy and other analysis of each plant species, thirteen plant species were divided into four levels. Arabidopsis thaliana, Oryza sativa and Zea mays had the highest quality, followed by Brachypodium distachyon, Populus trichocarpa, Vitis vinifera and Glycine max, Sorghum bicolor, Solanum lycopersicum and Fragaria vesca, and Lotus japonicus, Medicago truncatula and Malus × domestica in that order. Assembling the scaffold sequences into chromosome sequences should be the primary task for the remaining nineteen species. Low GC content and repeat DNA influences genome sequence assembly.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>The quality of plant genome sequences was found to be lower than envisaged and thus the rapid development of genome sequencing projects as well as research on bioinformatics tools and the algorithms of genome sequence assembly should provide increased processing and correction of genome sequences that have already been published.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23922843</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>03</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Evaluation of genome sequencing quality in selected plant species using expressed sequence tags.</ArticleTitle>
<Pagination>
<MedlinePgn>e69890</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0069890</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">With the completion of genome sequencing projects for more than 30 plant species, large volumes of genome sequences have been produced and stored in online databases. Advancements in sequencing technologies have reduced the cost and time of whole genome sequencing enabling more and more plants to be subjected to genome sequencing. Despite this, genome sequence qualities of multiple plants have not been evaluated.</AbstractText>
<AbstractText Label="METHODOLOGY/PRINCIPAL FINDING" NlmCategory="RESULTS">Integrity and accuracy were calculated to evaluate the genome sequence quality of 32 plants. The integrity of a genome sequence is presented by the ratio of chromosome size and genome size (or between scaffold size and genome size), which ranged from 55.31% to nearly 100%. The accuracy of genome sequence was presented by the ratio between matched EST and selected ESTs where 52.93% ∼ 98.28% and 89.02% ∼ 98.85% of the randomly selected clean ESTs could be mapped to chromosome and scaffold sequences, respectively. According to the integrity, accuracy and other analysis of each plant species, thirteen plant species were divided into four levels. Arabidopsis thaliana, Oryza sativa and Zea mays had the highest quality, followed by Brachypodium distachyon, Populus trichocarpa, Vitis vinifera and Glycine max, Sorghum bicolor, Solanum lycopersicum and Fragaria vesca, and Lotus japonicus, Medicago truncatula and Malus × domestica in that order. Assembling the scaffold sequences into chromosome sequences should be the primary task for the remaining nineteen species. Low GC content and repeat DNA influences genome sequence assembly.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The quality of plant genome sequences was found to be lower than envisaged and thus the rapid development of genome sequencing projects as well as research on bioinformatics tools and the algorithms of genome sequence assembly should provide increased processing and correction of genome sequences that have already been published.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shangguan</LastName>
<ForeName>Lingfei</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>College of Horticulture, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Jian</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kayesh</LastName>
<ForeName>Emrul</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Xin</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Changqing</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pervaiz</LastName>
<ForeName>Tariq</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wen</LastName>
<ForeName>Xicheng</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fang</LastName>
<ForeName>Jinggui</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>07</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020224" MajorTopicYN="Y">Expressed Sequence Tags</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>01</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>06</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23922843</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0069890</ArticleId>
<ArticleId IdType="pii">PONE-D-13-02146</ArticleId>
<ArticleId IdType="pmc">PMC3726750</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2008 Sep;36(16):e105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18660515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Feb;18(2):324-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18083777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Sep;20(9):1165-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20508146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):8007-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12808149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W5-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18440982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jan 21;463(7279):311-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20010809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2010;8(9). pii: e1000475. doi: 10.1371/journal.pbio.1000475</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20838655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Nanotechnol. 2009 Apr;4(4):265-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19350039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2007;7:152</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17727727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1993 Aug;4(4):332-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8401577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(6):e21400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21731731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3533-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 5;296(5565):92-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11935018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):224-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12519987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Oct;168(2):701-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15514046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biology (Basel). 2012 Sep 18;1(2):439-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24832233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 Dec;21(12):2224-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21926179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3960-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Mar;33(6):1001-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12631325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Sep 8;477(7363):207-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21832995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19243-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16357197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2007 Mar;114(5):823-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17219208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Nov 20;326(5956):1112-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Mar;22(3):557-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22147368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Sep;13(9):1998-2004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12915492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Nov 20;326(5956):1115-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 5;296(5565):79-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11935017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Comp Genomics. 1996;1(4):281-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9689213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(3):e22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16473845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1999 Oct;9(10):950-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10523523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2012;13(4):243</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22546054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2001 Oct;11(10):1660-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11591643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D959-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18063570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3597-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1998 Sep;8(9):967-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9750195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2000 Mar;16(3):203-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10869013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2000 Jun;16(6):276-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10827456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">271968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2001 Nov;11(11):1952-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11691860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Mar;36(4):e25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18263613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 May 1;21(9):1859-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D5-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17170002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2009 Jul;10(4):354-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19482960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Jul 22;430(6998):471-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15269773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011;12:11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21219603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2007 Jan;7(2):177-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17146835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 Jun;7(6):461-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20453866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Apr 4;320(5872):106-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18388294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2006 Jun;60(6):1198-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16892970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Jan 1;29(1):173-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11125082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Feb 16;291(5507):1304-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11181995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Feb;16(2):77-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21081278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Dec 14;408(6814):796-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11130711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W327-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 May;20(5):675-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20305016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2009 Nov;10(6):609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19933209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 31;485(7400):635-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22660326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1997 Aug;13(4):477-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9283765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D883-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17145706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D1034-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17932055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1975 May 25;94(3):441-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1100841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Sep 15;437(7057):376-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16056220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1977 Feb;74(2):560-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">265521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 9;309(5741):1728-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 1998 Jun;8(3):333-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9666329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Apr;70(1):177-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22449051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Feb 15;409(6822):860-921</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11237011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Feb;131(2):419-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12586867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Jun 21;252(5013):1651-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2047873</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Fang, Jinggui" sort="Fang, Jinggui" uniqKey="Fang J" first="Jinggui" last="Fang">Jinggui Fang</name>
<name sortKey="Han, Jian" sort="Han, Jian" uniqKey="Han J" first="Jian" last="Han">Jian Han</name>
<name sortKey="Kayesh, Emrul" sort="Kayesh, Emrul" uniqKey="Kayesh E" first="Emrul" last="Kayesh">Emrul Kayesh</name>
<name sortKey="Pervaiz, Tariq" sort="Pervaiz, Tariq" uniqKey="Pervaiz T" first="Tariq" last="Pervaiz">Tariq Pervaiz</name>
<name sortKey="Sun, Xin" sort="Sun, Xin" uniqKey="Sun X" first="Xin" last="Sun">Xin Sun</name>
<name sortKey="Wen, Xicheng" sort="Wen, Xicheng" uniqKey="Wen X" first="Xicheng" last="Wen">Xicheng Wen</name>
<name sortKey="Zhang, Changqing" sort="Zhang, Changqing" uniqKey="Zhang C" first="Changqing" last="Zhang">Changqing Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Shangguan, Lingfei" sort="Shangguan, Lingfei" uniqKey="Shangguan L" first="Lingfei" last="Shangguan">Lingfei Shangguan</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002698 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002698 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23922843
   |texte=   Evaluation of genome sequencing quality in selected plant species using expressed sequence tags.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23922843" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020